Commercial Passive “House” Buildings in Europe:
Materials, Systems, Insights

16 Sept 2011

Passive House Northwest, Fall 2011 Conference
Seattle, WA

Peter Reppe
SOLARC Architecture / Engineering Inc., Portland/Eugene, OR
Summary

• General comments.

• Common practice in European non-single family home bldgs:
 – Envelope
 – Lighting and plug loads
 – HVAC
 – Materials
Foreword

- Over 220 non-residential buildings PH certified in Europe (30% of all PH by sqft),
- Significant number of PH certified bldg components available,
- Project cost range: $150-270/sqft (1,000-1,800 euro/m2),
- Stronger regulatory requirements, higher energy costs, and incentive programs,
- Critical importance of integrated design and construction process.
Envelope

- Wall / roof / floor R-values: 35-50
 - EIFS systems (stucco) (polystyrene, mineral wool, wood fiber board / adhered or anchored)
 - Rainscreen façade
 - Rockwool or fiberglass / lattice,
 - Blown-in cellulose / TJI or Larson truss systems.
 - Vacuum Insulated Panels.
Envelope

- Airtightness at PH levels
 - Cast-in-place or masonry,
 - Special tapes,
 - Boots, membrane seals.
Envelope

- **Windows / doors**
 - Always PH certified
 - Triple-pane (R-5.8)
 - Dual or triple-seal, tilt-turn/hopper/etc. or fixed.
 - Curtain wall systems
Lighting, Plug-Loads

- Extensive daylighting (and daylight controls),
- Sophisticated, automated control of heat gain and glare.
Lighting, Plug-Loads

• Electric lighting:
 – light levels at/below IESNA recommendations (space-type specific),
 – T5 fluorescent, D/ID, task lighting,
 – e.g., 0.6 W/sqft for 30fc average.
• LCD monitors,
• Laptops or fanless desktop computers.
HVAC, ventilation

- Heat/energy recovery ventilation (85%+, wheel or plate HX)
 - Predominantly central units,
 - Cascading ventilation,
 - Tempering of outside w/earth-tube or brine HX,
 - Defrost with brine or electric resistance,
 - “Plug-and-play” duct systems (metal and plastic) w/all accessories,
HVAC, heating

- **Heating**
 - Predominantly decoupled from ventilation,
 - Hydronic systems (floor, baseboard),
 - Sources:
 - District htg systems,
 - Wood pellet boilers (& solar hot water),
 - Nat Gas boilers / Wtr heaters (& solar hot water),
HVAC, cooling

- Cooling
 - Prevention\(^3\) and expanded comfort range
 - “Natural cooling” only (no chillers, DX, or GSHP)
 - Earth-tubes, OA economizer,
 - Night flush of hollow-core floors (and spaces),
 - Brine-cooling of floor slabs
Materials

• Emergence of bio-based materials:
 – Wood-framed windows,
 – Wood-fiber/hemp/cork insulation (board, loose-fill),
 – Wood framing (structural and non-str.),
• Mix of post-beam and mass-wall constr.,
• Exterior: stucco, cement board, wood, metal,
• Floors predominantly concrete.
Materials

Thermal breaks at structural elements:
- Foamglass (and XPS),
- Aerated concrete (AAC),
- Point loading and pillar insulation,
- Stainless steel and fiberglass (reinforcements and anchors).
Retrofits

- Can follow prescriptive path (EnerPHit),
- Exterior and interior insulation,
- Near complete replacement of lighting and HVAC systems.
Questions…

The End
(or the beginning?)

Peter Reppe (peterr@solarc-ae.net)
541.349.0966
SOLARC Architecture / Engineering Inc., Portland/Eugene, OR