Design of the PH heating/ventilation system

26 March 2010

Peter Reppe
SOLARC Architecture / Engineering Inc., Eugene, OR

Regional PassiveHaus Northwest Gathering 2010
Summary, Mechanical Systems in Passive Houses

26 March 2010

- Glossary for the non-engineer
- Unique aspects of PH mechanical systems
- System options / variations (esp. for NW climate)
- Interaction between mech system and other uses (hot water, dryer, lights)
- Ducts / diffusers (locations, layout, products)
- Controls (how and why)
- Integration of Renewables
- Basics of equipment sizing
Glossary for the non-engineer

26 March 2010

- Ventilation
- Peak heating/cooling load
- Load vs. consumption
- Supply-, return-, outside-, exhaust-air
- OA economizer
- Types of heating

Equipment
Unique aspects of PH mechanical systems

26 March 2010

- Low air flow rates
- Variable speed fans
- Low supply air speeds into space
- Little/no temperature stratification in bldg.
- 100% outside air system
- Ultra-low flow-resistance ductwork
System Options in moderate Pacific Northwest Climate

- Heat or energy recovery ventilator

- **Heating options:**
 - Electric resistance (air / hydronic)
 - (Air-Source) Heat pump (S.S.)
 - Wood / Natural Gas (hydronic)
 - Solar (air / hydronic)

- **Cooling options:**
 - Prevention\(^3\) + passive cooling
 - Earth tube
 - (Hydronic Coil)
 - (Air-Source) heat pump
Interaction w/ other systems

26 March 2010

- Domestic hot water
- Stove / Hood
- Dryer
- Lights
- Fridge
- Other appliances, gadgets
Air transport and delivery

26 March 2010

- Ducts
- Diffusers, Return grilles
- Transfers
- Silencers
- T&B
Controls
26 March 2010

- KISS
- Temperature
- Supply Air flow rate
- (Outside Air flow rate)

<table>
<thead>
<tr>
<th>Test</th>
<th>Inlet Water F</th>
<th>Water Flow GPM</th>
<th>Air Flow CFM</th>
<th>Inlet Air F</th>
<th>Outlet Water F</th>
<th>Outlet Air F</th>
<th>DP Fan in. w.g.</th>
<th>Capacity Btu/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>160</td>
<td>2.5</td>
<td>200</td>
<td>55</td>
<td>152.8</td>
<td>95.7</td>
<td>0.02</td>
<td>8777</td>
</tr>
<tr>
<td>2</td>
<td>160</td>
<td>2.5</td>
<td>200</td>
<td>65</td>
<td>153.5</td>
<td>102.0</td>
<td>0.02</td>
<td>7922</td>
</tr>
<tr>
<td>3</td>
<td>160</td>
<td>5.0</td>
<td>200</td>
<td>65</td>
<td>153.5</td>
<td>103.9</td>
<td>0.02</td>
<td>8393</td>
</tr>
<tr>
<td>4</td>
<td>160</td>
<td>2.0</td>
<td>100</td>
<td>65</td>
<td>153.7</td>
<td>123.5</td>
<td>0.01</td>
<td>6220</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>2.0</td>
<td>200</td>
<td>65</td>
<td>115.5</td>
<td>85.9</td>
<td>0.03</td>
<td>4452</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>5.0</td>
<td>200</td>
<td>65</td>
<td>118.1</td>
<td>87.2</td>
<td>0.02</td>
<td>4783</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td>2.5</td>
<td>100</td>
<td>65</td>
<td>117.1</td>
<td>98.8</td>
<td>0.01</td>
<td>3585</td>
</tr>
</tbody>
</table>
Integration of Renewables

26 March 2010

- Electric systems
 - Photovoltaics
 - Micro-Hydro
 - Micro-Wind
- Solar Thermal
 - Hot Water
 - Air collectors
Equipment sizing, basics

26 March 2010

- Ventilation (V in cfm)
 - PHPP, “Ventilation” tab or ASHRAE 62

- Heating (Q in Btu/hr)
 - PHPP, “Heat Load“ tab, Q84 (+ ?? %)

- Equipment sizing
 - Coils: rated capacity in Btu/h or Watts
 - Air: \[Q = 1.085 \times V \text{ (cfm)} \times \Delta T \text{ (°F)} \]
 - Hydronic: \[Q = 500 \times GPM \times \Delta T \text{ (°F)} \]
The End (or the beginning?)