37 Hudson
Target Net Zero
Columbia City - Mixed Use Housing
Cascade Built & NK Architects
March 11th, 2016
Outline

Where are we going?

A. **Big Hairy Audacious Goal**
B. **Reality Check**
C. **What is Net Zero target?**
D. **Comments - Responses**
Built Using Passive House Standards:

- **SolHaus**
- **Mini-B backyard cottage**
- **Park Passive**
- **View Haus 5**

Passive House Certified Projects:
B.H.A.G. Opportunity
(Big Hairy Audacious Goal)

Net Zero APARTMENTS in 4-stories:

- Small Lot of 4900 square feet
- 35 small dwelling units averaging 400 SF
- 800 square foot corner retail
- Solar PV array to achieve Net Zero annual **ON-SITE** performance

PROTOTYPE?
A Passive House approach:

Basic Systems to achieve Market Rate:

1. 2x6 wood stud + 3-inch Mineral Wool wrap
2. Sealed Sheathing for Airtightness
3. (8) Shared Energy Recovery Ventilators
4. Large Windows with Operable Shading
5. Cross Ventilation for Summer Cooling

Will this get the project to B.H.A.G?
A few challenges:

1. SEDU’s = small footprint

 more people & stuff PSF

2. Open walks and stairs

 many entry doors

3. Cross ventilation

 less Treated Floor Area

4. Big west facing windows

 Few South Windows

5. Not the ideal orientation
Building Plan - Upper Levels

Typical Floor Levels 2 - 4
Building Plan - Ground Level

- Trash & Recycle
- Bike Storage
- Open Court
- Amenity: 355 sf
- Type A: 335 sf
- Type A: 335 sf
- Live Work: 335 sf
- Live Work: 335 sf
- Live Work: 335 sf
- Retail: 820 sf

Ground Level Plan
Net Zero Strategy:

PV Area

20 kWh/sf/yr

1 sf Production

= 4 sf Use

Building Floor Area

5 kWh/sf/yr

5 kWh/sf/yr

5 kWh/sf/yr

5 kWh/sf/yr

x 3.412 kbtu/kWh

= 17 EUI
Maximum PV array design

- Elevated PV for total lot coverage
- 5% slope for passive washing
- Elevated for Fire Access
- Exceeds Zoning Height Limit
Reality Check:

Land Use pushback on Height of PV Cap
Cost of Raised PV Structure
Fire Department requires pathway on all sides

ELEVATED ARRAY:
72,000 kW array provides 18.0 kBtu/SF/year = 18 EUI
Meets the Passive House target of PHIUS+2015

ON-ROOF ARRAY:
48,000 kW array provides 12.0 kBtu/SF/year = 12 EUI

Not the Net Zero target intended!
On-Roof Array:

ON-ROOF ARRAY:

48,000 kW array provides 12.0 kBtu/SF/year = 12 EUI
On-Roof Array:

ON-ROOF ARRAY:

48,000 kW array provides 12.0 kBtu/SF/year = 12 EUI
2000 watt Society
1998 Swiss global target of personal performance

A. 2,000 watts of energy flow per person – source energy

B. 12,000 watts of energy flow is US average today

C. 1,470 kWhrs/year “SITE” energy per person

What if we apply this principal to 3700 S Hudson?
Ventilation Strategy - I

Distributed ERV’s

TYPICAL FLOOR LEVEL
Ventilation Strategy - 2

Distributed ERV’s

EXHAUST AIR DUCTS

TYPICAL FLOOR LEVEL

© 2016 Nicholson Kovalchick Architects

DESIGN FOR A SUSTAINABLE FUTURE
Summer Shading Strategy

- **SUMMER - am**
- **SUMMER - pm**
- **WINTER - am**
- **WINTER - pm**
3700 S Hudson - as 2000 watt building

Operating as a 2000 watt building “IN THE FUTURE”

13,000 SF = 12 EUI

Initial PHPP:
5.11 kBtu / SF / year
(close but needs work!)
The Brussels Experience

Exemplary Buildings Program
Thank you!