Shifting Gears: A Passive House Car Dealership in the Making

Andrew Peel

Accredited Passive House Building Certifier

Peel Passive House Consulting
PHI CPD Credits

PHNW conference seminars are approved for PHI and AIA CPD Credits

https://service.passivehouse.com/en/profis/advanced_training
Project Background

• **Client:** The Scottsville Group
• **Building:** Car dealership and repair shop
• **TFA:** 1,500m² (16,000 ft²)
• **Location:** Red Deer, Alberta
• **Design Temp:** -29°C (-20°F)
The Client

• **Business:**
 – Owns several dealerships: GMC, Buick, Nissan
 – “Service + Value + Integrity”
 – 50th anniversary of their GM store

• **Corporate:**
 – PH aligns with Subaru environmental strategy
 E.g. Partial Zero Emission Vehicles (PZEV)
 – Inspired by Subaru of Indiana Automotive assembly plant
 First zero-landfill factory in the U.S.
Project Requirements/Goals

• **Performance:**
 – Owner not environmentalist
 – Recognized importance of looking beyond BAU
 – Saw PH as a better way
 – “Important statement to the industry and the country [flowing from the land of oil and gas]”
 – Garrett Scott

• **Long-term benefits:**
 – legacy project that will cost us virtually nothing to heat and cool the building

• **Service:**
 – PH should not disrupt service – to customers or vehicles
Cold Climate Overview

• **Cold temperatures**
 – Every decision matters more
 – Airtightness has huge impact
 – Frost protection, (low) humidity become problematic
 – Design temps influence functionality of equipment

• **Product Availability**
 – No local manufacturer of cold climate products
 – Very few on EU market
 – Some EU companies won’t export

• **Design:**
 – we walked a fine line to meet the targets
Ground Floor

- Showroom
- Circulation/Reception
- Sales/Office
- Service
- Dropoff Area
Building Design

- 2 storeys
- Typical Car Dealership aesthetic
 - Corporate image guidelines were non-negotiable
- Compact Form
- Highly glazed front facade
 - West: 55% (showroom: 65%)
 - Other: 1-17%

Southwest Facade
West Glazing

- Highly glazed façade must face West entrance
- Alberta is sunny!
 - 50% more West radiation than Germany
- Overhangs not permitted
 (Corporate guidelines)

<table>
<thead>
<tr>
<th>City</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calgary, Alberta</td>
<td>2396</td>
</tr>
<tr>
<td>Winnipeg, Manitoba</td>
<td>2353</td>
</tr>
<tr>
<td>Edmonton, Alberta</td>
<td>2345</td>
</tr>
<tr>
<td>Regina, Saskatchewan</td>
<td>2318</td>
</tr>
<tr>
<td>Saskatoon, Saskatchewan</td>
<td>2268</td>
</tr>
<tr>
<td>Thunder Bay, Ontario</td>
<td>2121</td>
</tr>
<tr>
<td>Hamilton, Ontario</td>
<td>2111</td>
</tr>
<tr>
<td>Victoria, British Columbia</td>
<td>2109</td>
</tr>
<tr>
<td>Ottawa, Ontario</td>
<td>2084</td>
</tr>
<tr>
<td>Toronto, Ontario</td>
<td>2066</td>
</tr>
</tbody>
</table>
West Glazing

- Low amount natural shading
 - 1-2 storey
 - Low tree lines

- Tree Planting
 - Blocked too much sun – jeopardized space heating demand target
West Glazing

• Operable external Blinds
 – Too windy!
 – Up to 103 kph (64 mph) from West
 • Canada’s windiest: St John’s 137 kph
 • Toronto: 61 kph
 – Average doesn’t matter for durability
 – Integration with tall curtain walls is difficult
 – Client concerned with aesthetics
West Glazing

- **Electrochromatic Glazing**
 - Expensive
 - Solar characteristics not suitable for meeting space heating demand target or window comfort criteria
 - \(\text{SHGC: } 0.09-0.41 \text{ max} \)
 - \(U_g = 0.8 \text{ W/m}^2\text{K (0.14 Btu)} \)
West Glazing

• Solution
 – Automated operable internal blinds (with manual override)
 – Insulated Spandrel panels in top row
 – Deal with additional peak cooling load
Windows

- Comfort Requirement: $U_{w,\text{installed}} \leq 0.61 \text{ W/m}^2\text{K (0.11 BTU)}$
- Only **one** certified cold climate window available
 - Price was comparable to cool-temperate certified windows
- **No** certified cold climate curtain wall
- Relied on **window heating**
- Wicona series
 - C/W: Wicline 50HI
 - Windows: WL/WS 75 Evo
 - Doors: Wicline 95
Overhead Doors

- Initial Design had 7 doors
- We proposed designed that reduced to 2
- Client thought it would disrupt service
- Ultimately agreed to 4
Overhead Doors

- **Initial concern over heat loss due to operation**
 - Investigation revealed minimum heat loss
 - 15 m³/h/event (9 CFM)
- **Greater concern was standby air leakage**
 - 17% of transparent envelope (4% of wall area)
 - Conventional doors: no regards for airtightness
- **Airtightness classification**
 - Referred to EU system
 - Class 2 would increase AT by 0.08 ACH@50Pa
 - Whole Buildings Target is 0.4! (so 20%)
 - Best we could locate was Class 3 → increase by 0.04 (10%)
 - Manufacturer (Efaflex) could demonstrate performance
Overhead Doors

• Subsequently discovered that a Canadian-made door used on
• Initial investigation did not reveal a PH option from company

Wood Innovation Research Lab
- Prince George, BC
Internal Heat Gains

- Obtained Equipment List from Client early on
 - Impacts Heating & Cooling Demands and PER
 - 55% of IHGs in Repair shop

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>rating</th>
<th>Unit</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Compressor</td>
<td>1</td>
<td>25</td>
<td>HP</td>
<td>Intermittent usage. Say 40% duty cycle during operating hours.</td>
</tr>
<tr>
<td>Tire Mounting Machine</td>
<td>1</td>
<td>800</td>
<td>W</td>
<td>Very intermittent, say 5% duty cycle during operating hours</td>
</tr>
<tr>
<td>Hoists</td>
<td>6</td>
<td>2200</td>
<td>W</td>
<td>Very intermittent, say 5% duty cycle during operating hours</td>
</tr>
<tr>
<td>Alignment Hoist</td>
<td>1</td>
<td>2200</td>
<td>W</td>
<td>Very intermittent, say 5% duty cycle during operating hours</td>
</tr>
<tr>
<td>Alignment Equipment</td>
<td>1</td>
<td>500</td>
<td>W</td>
<td>Very intermittent, say 5% duty cycle during operating hours</td>
</tr>
</tbody>
</table>
Internal Heat Gains

• **Temperature Difference**
 – Repair Shop and Dropoff: 18° C (64° F)
 – Showroom: 20° C (68° F)
 – Considered losses between areas

• **Heat gain (and loss) from car engines**
 – Cars brought in warm and cold
 • *Heat flows happened to balance out*
 – Cars engines run during repairs
 • *Exhaust reaches 650° F*
 • *14% of IHGs (could be more if long engine run time)*
Ventilation Systems

- Subaru does not produce diesel cars, but services them

Separate car exhaust system required
- Tubes clipped to car exhaust and direct vented
- 2,400 CFM (400 CFM/service bay x 6 bays)
- Normally, all bays are exhausted if only 1 bay requires exhaust
- Convinced engineer to run each bay on separate extract fan
Heating & Cooling

- **VRF system**
 - Heads installed in suspended ceiling of corridors and ducted to each room
 - Considered residential model
 - Concern over longevity
 - Does not operate at winter design temperature
 - Requires electric backup
Heating System Capacity

Heating

- System size x3 more than conservative estimate of heating load (no gains)

<table>
<thead>
<tr>
<th>Method</th>
<th>Heating Load (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHPP</td>
<td>13</td>
</tr>
<tr>
<td>PHPP w/o gains</td>
<td>21</td>
</tr>
<tr>
<td>Engineer</td>
<td>64</td>
</tr>
</tbody>
</table>

Cooling

- Different story
- Large West facing glazing problematic

<table>
<thead>
<tr>
<th>Element</th>
<th>PHPP</th>
<th>Peak Day - Reasonable gains</th>
<th>Peak Day - worst gains</th>
<th>Peak 3 hours – worst gains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solar radiation - West (W/m2)</td>
<td>235</td>
<td>235</td>
<td>235</td>
<td>909</td>
</tr>
<tr>
<td>interior shading RF</td>
<td>60%</td>
<td>60%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>net IHGs</td>
<td>1911</td>
<td>4859</td>
<td>9215</td>
<td>9215</td>
</tr>
<tr>
<td>Peak Cooling Load (kW)</td>
<td>10.7</td>
<td>15.4</td>
<td>24.3</td>
<td>52.9</td>
</tr>
</tbody>
</table>

Engineer’s Calculation: 57
DHW

Showroom
- Low demand – handwashing
- Supplied by Sanden CO2 heat pump

Repair Shop
- Each car is washed after maintenance work
- 2020 L/day @ 60°C equiv
 (530 gal/day @ 140°F)
- On-demand gas heater was only option
- Large PER impact
 - 34 kWh/m²/yr (11 kBTU/ft²/yr)
Heat Recovery & Extraction

- Investigated numerous options for heat recovery from car exhaust system
 - HRV
 - Tube in tube
 - Wrap around coil
 - Heat pipe
- None were workable
- Considered earth tube or ground loop
 - 2400 CFM – large capacity would be required
 - Average ground temperate = 4°C (39°F)
DHW heat recovery

- Car wash load was good candidate for heat recovery
 - High volume
 - High temperature (76°C)
 - Frequent use
- Initially identified horizontal shower-type unit
 - Company stopped manufacturing (trade issues)
 - Was willing to create custom unit, but eventually abandoned it
- Eventually settled on vertical unit installed horizontally
 - 10 ft long
Summary

• Think through the details early
 – Estimate equipment & occupant loads
 – Identify all energy flows
 – Not everything is predictable → add some buffer

• Cold Climates demand everything you’ve got
 – Simplified approach is critical

• Find engineers who are willing to explore options

• Cold climate product innovation required

• If you like a challenge, design a Passive House car dealership in a cold climate
Questions?

Thank you for your attention

Andrew Peel
Peel Passive House Consulting Ltd

t: 905 483 9925
e: andrew@peelpassivehouse.ca
w: peelpassivehouse.ca
Additional Slides
Internal Heat Gains

• Repair shop has high Internal Heat Gains
 – 6.5 W/m^2 (0.6 W/ft^2)
 – Solar gains not beneficial
Ventilation Systems

• We recommended a single ERV for whole building
 – Engineer was not comfortable, due to car exhaust

• Repair Shop
 – Standard background rate is 3 ACH
 – Negotiated down to 2 ACH
 – Run intermittently, tied to air quality sensor

• Showroom
 – Negotiated initial rates down by > 50% (0.6 → 0.29 ACH)

• Issue: Dropoff ERV oversized for background rate
 – Solution: Intermittent operation
Ventilation Distribution

Initial design

- Ventilation air supplied into ceiling plenum
- relied on heat pump fans to circulate ventilation air into each room
- Issue: no heating = no ventilation
- Alternative is to run all the time – Substantial fan energy

Suspended ceilings as plenum chambers
Ventilation Distribution

- Eventually convinced engineer to revise design
- Ventilation air supplied into each space
- No heating = ventilation continues
Cooling Load

- PHI study supports this result 40% glazing

Hourly based cooling load 2x higher than PHPP daily

PHPP conservative for daily load
• Insert graph of PER breakdown
• PER exception
Thermal Envelope
Ground Floor

• Poor soil conditions
 – Prevented insulated raft slab
 – Fully wrapped foundation instead
Foundation work

• How to pour concrete in the middle of winter
Roof

- Initial drawings had stepped roof
- Revised to flat to simplify construction and reduce cost
Window & CW Installation

- **Insulated box** as lintel to reduce timber%.
- Otherwise, fairly conventional Passive House detailing.
Assembly Performance Summary

<table>
<thead>
<tr>
<th>Element</th>
<th>U-value [W/m²K]</th>
<th>R-value</th>
<th>Insulation Thickness [mm] (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor Slab</td>
<td>0.11</td>
<td>R54</td>
<td>305 (12”)</td>
</tr>
<tr>
<td>Basement Wall</td>
<td>0.13</td>
<td>R43</td>
<td>510 (20”)</td>
</tr>
<tr>
<td>Main Wall</td>
<td>0.08</td>
<td>R71</td>
<td>250 (10”)</td>
</tr>
<tr>
<td>Roof</td>
<td>0.03 – 0.04</td>
<td>R122-R177</td>
<td>1340 (52”)</td>
</tr>
</tbody>
</table>

How bout them thick walls!
Airtightness Strategy

- **Basement Floors & Walls**
 - Taped vapour barrier membrane

- **Main Walls**
 - Intello – required to avoid dew point issues
 - Protected by service cavity where services are installed
 - No interruption at intermediate floors

- **Roofs**
 - Taped ½” plywood

- **Windows**
 - Intello taped to window frames/CW

- **Building Target**
 - 0.4 ACH@50Pa – required to meet space heating demand